

NITIN CORPORATION
402, 4th Floor,
Bezzola Commercial Complex,
Sion – Trombay Road,
Chembur,
Mumbai – 400071,
India.

WEB: www.corponit.com

E – MAIL: enquiry@corponit.com
nitincorporation@yahoo.com

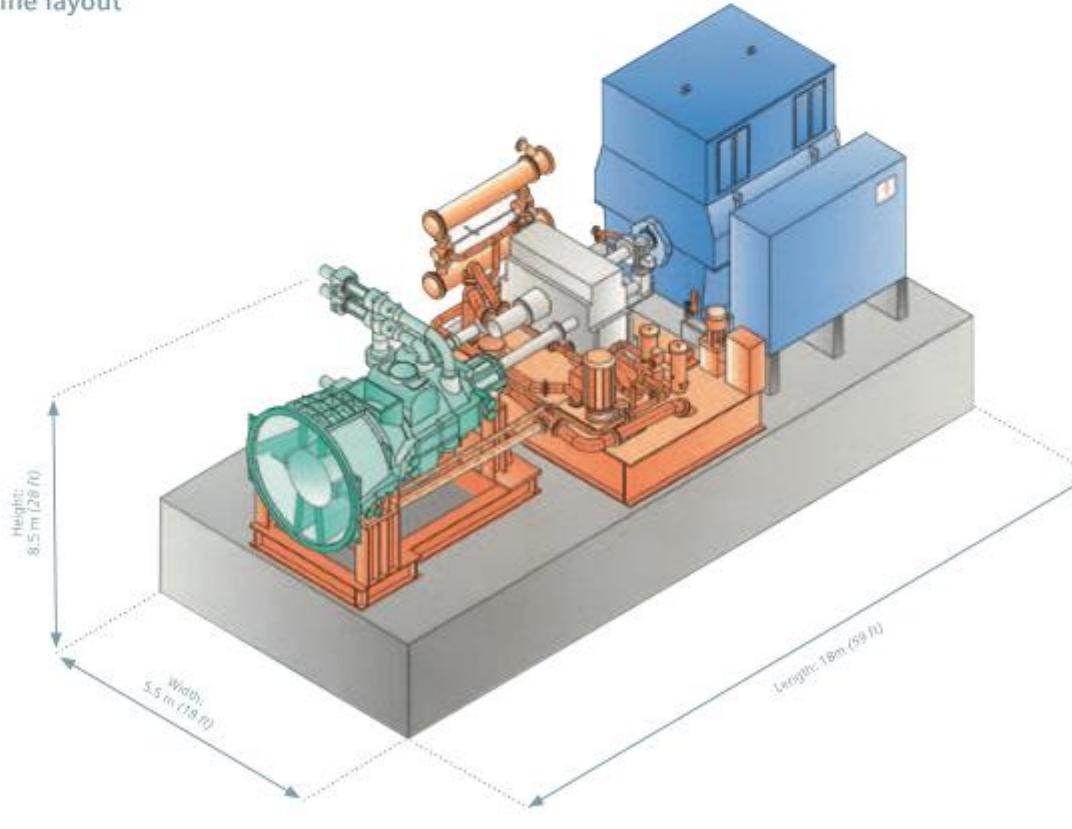
PH (M) : +91 -9920404345

THE FOLLOWING USED BRAND NEW CONDENSING STEAM TURBINE GENERATOR SETS ARE AVAILABLE FOR SALE WITH US WITH IMMEDIATE DELIVERY:

5 Nos. 30 MW each, BRAND NEW SIEMENS make Condensing type Steam Turbine Generator Sets, having the following technical specifications:

SST-400 Steam Turbine

Overview


The SST-400 is a single casing steam turbine, providing geared or direct drive to 50 and 60 Hz generators, or to compressors and pumps. The symmetrical casing with horizontal joint flange enable the SST-400 to accept short start-up times and rapid load changes.

The modular package design allows a wide variety of configurations to satisfy the customer's individual needs in the most economical way. The utilization of selected proven components assures high reliability and easy maintenance.

Typical applications of the SST-400 include:

- Industrial power plants, e.g. captive power plants in the chemical industry, sugar industry, textile industry, in pulp and paper mills, steel works, mines
- Cogeneration and district heating plants
- Concentrated Solar Power (CSP) plants
- Geothermal power plants (SST-400 GEO)
- Biomass plants, waste to energy, e.g. waste incinerators, waste heat from chemical processes
- Combined cycle power plant

Turbine layout

SST-400 – design features

The SST-400 is available as a back pressure or condensing turbine with internally controlled extraction and possibility of several bleeds. The blading design provides for high efficiency over the whole operation range, giving the customer highly flexible plant operation. The design of the exhaust blades allows large exhaust areas with high thermodynamic efficiency and reliability. With a separate internal casing, the steam turbine can also be used as a single casing reheat turbine.

Operational flexibility

The turbine has a symmetrical casing with horizontal joint flange, which allows short start-up times and rapid load changes. The design of all supports for labyrinth and blade carriers ensures flexibility for the whole turbine. Internal valve arrangements, controlling the steam flow to the back end of the turbine, are used to maintain constant process steam extraction pressures over a wide flow range.

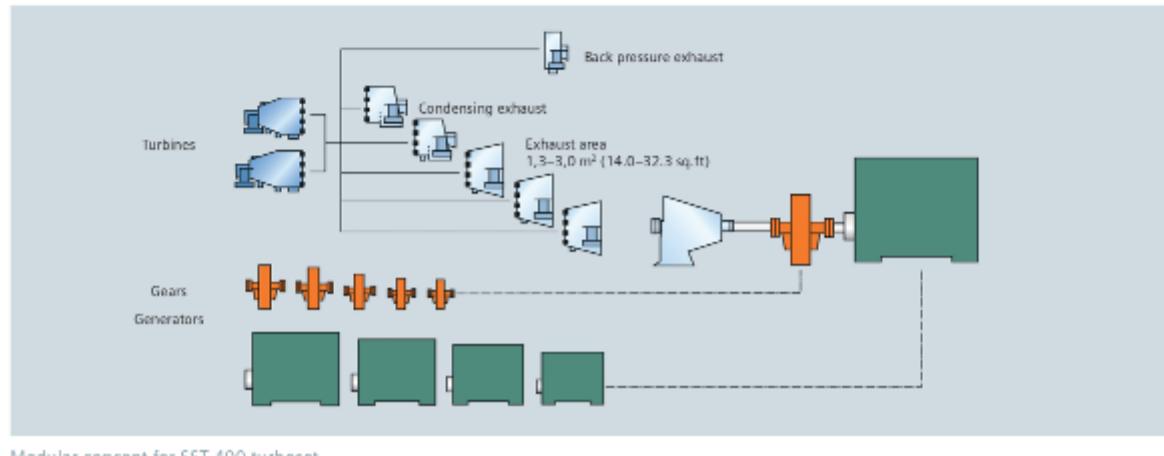
The rotor of the SST-400 range is made of solid forging and is fitted with resonance-resistant blading. The reduction

gears are taken from the existing range of world class gear manufacturers and have proven high reliability and performance.

Reliability and efficiency from proven technology

The SST-400 single casing turbine can be equipped with upward, downward or axial exhaust to fit with the selected installation. The turbine skid can be combined with standardized gearbox-oil units and generators to a turboset, according to the customer's needs. The turbine skid and gearbox / oil unit are fully assembled in the workshop before being shipped to the site.

Easy maintenance


Our proven installation and maintenance concept lowers maintenance cost by enabling easy access to the installed components, the turbine, gearbox, and generator. Several maintenance concepts are available for different modes of operation.

Design features

- Customized steam path
- Proven
- Modular
- Thermoflexible design

Customer benefits

- Fast and early layout planning
- Short delivery time
- Compact design minimizes space requirements of installation
- Easy access to mechanical components facilitates maintenance
- Remote control for simple operation
- High reliability/availability
- High efficiency

SST-400 technical data

- Power output 50 or 60 Hz, up to 65 MW
- Speed range 3000–8000 rpm
- Live steam conditions
Pressure up to 140 bara / 2030 psia
Temperature up to 540°C / 1004°F
- Hot reheat conditions
Pressure up to 30 bara / 435 psia
Temperature up to 450°C / 842°F
- Bleed up to 60 bara / 870 psia
- Controlled extraction (single or double)
Pressure up to 45 bara / 653 psia
Temperature up to 450°C / 842°F
- Exhaust steam conditions
Back pressure up to 25 bara / 363 psia
District heating up to 3 bara / 43 psia
Condensing up to 0.6 bara / 8.7 psia

SST-400 GEO technical data

- Power output
50 or 60 Hz, 5–55 MW (condensing)
50 or 60 Hz, 5–60 MW (non-condensing)
- Speed range 3000–6000 rpm
- Live steam conditions
Pressure up to 12 bara / 175 psia
Temperature up to 250°C / 482°F
- Exhaust steam conditions
Condensing up to 0.4 bara / 5.8 psia
Non-condensing up to 1.4 bara / 20 psia

All data are approximate and project-related.

TECHNICAL SPECIFICATION

TURBINE DETAILS:

Make	:	Siemens
Year of make	:	2011
Type	:	SST 400
Power	:	30 MW
Inlet Steam Pressure	:	128 bar
Inlet Steam Temperature	:	535°C
Extraction Pressure	:	10 bar
Cooling Water Temperature	:	25°C
Cooling Water Flow	:	4130 t/h
Speed	:	5000 RPM

GENERATOR DETAILS:

Make	:	Siemens
Type	:	S6ENS-100A-4P
Year of Make	:	2011
Power	:	38000 kVA
Speed	:	1500 RPM
Voltage	:	10500 V (-5/+5%)
Current	:	2099 A
No of Phases	:	3
Frequency	:	50 Hz
P.F	:	0.8
Type of Excitation	:	Self Excitation
Connection	:	Star
Enclosure	:	IP 54
Type of Cooling	:	Air Cooling
Cooling Air Temperature	:	32 Deg. C
Duty	:	Continuous
Altitude	:	1000 M
Insulation Class	:	F

PACKING LIST:

for one set of SST400 steam turbine and one set of 30MW generator

No.	Description / Cargo	Dimensions In cms			Volume In M3	Weight In Kgs	
		Length	Width	High		Net	Gross
1	Steam Turbine on the base frame	600	350	390	81.900	54,800.000	55,000.000
2	Base frame with oil system and gearbox	670	365	340	83.147	33,000.000	33,200.000
3	Turbine - base plates, foundation bolts and fixing elements	238	88	67	1.403	570.000	720.000
4	Turbine - accessories	328	228	207	15.480	2,350.000	2,800.000
5	Turbine - piping I.	360	68	87	2.130	390.000	490.000
6	Turbine - spare parts	80	80	90	0.576	166.000	216.000
7	Turbine - control oil hydraulic unit	228	128	187	5.457	750.000	1,080.000
8	Turbine - piping II.	740	133	197	19.389	4,870.000	5,800.000
9	Turbine - valves I.	260	223	127	7.363	2,879.000	3,285.000
10	Turbine - valves II.	380	103	127	4.971	410.000	752.000
11	Turbine - electrical cubicles	190	150	251	7.154	825.000	1,909.000
12	Turbine - valves III.	380	103	127	4.971	793.000	1,135.000
13	Turbine - control system	348	118	252	10.348	1,100.000	1,420.000
14	Generator	548	366	407	81.631	53,900.000	58,800.000
15	Generator - accessories, assembly parts	350	170	186	11.067	888.000	1,705.000
16	Generator - anchorage	140	120	106	1.781	434.600	717.000
17	Padel -underfull mortar	80	60	81	0.389	100.000	183.000
18	Generator - high-voltage terminal box	355	242	314	26.976	3,200.000	4,631.000
19	Generator - Spare Parts	239	126	104	3.132	330.624	531.000
20	Turbine - Motor	50	50	108	0.270	120.000	140.000
21	Total				369.535	161,876.224	174,514.000

Remark:

The above packing list is preliminary and the actual packing list shall prevail.

NITIN

SCOPE OF SUPPLY:

Steam Turbine – radial exhaust- Alternative 1

1 Condensing turbine type SST 400 comprising:

- 1 Emergency stop valve, hydraulic, for the live steam inlet, with built-in steam strainer
- 3 Control valves with servo operator for the live steam inlet
- 5 Bleeds
- Reverse flow protections for bleeds as shown in P&ID (loose supply)
- Radial exhaust
- Control system for speed, power (see chapter 6)
- Turbine protection (see chapter 6)
- Mat-type insulation
- Internal steam pipes with valves for balance piston, sealing steam and leak steam
- Internal pipes for drain system with valves
- Internal oil pipes for the lube and control oil system with valves
- Start-up drains with pneumatic operated shut-off valves
- Operating drains
- Baseframe for the turbine
- Earth terminal
- Boroscope openings in the turbine casing
- Sealing steam pressure control (sealing steam from live steam)
- 1 Connection for air dryer (dehumidifier)
- 1 Sealing steam cooler for the rear labyrinth
- Standard preservation (6 months) as per Siemens - factory standard
- Prime coat and finishing coat of paint as per Siemens - factory standard
- Touch up paint to Site
- Operation manual, 3-fold, English language

Steam Turbine – axial exhaust- base offer

1 Condensing turbine type SST 400 comprising:

- 1 Emergency stop valve, hydraulic, for the live steam inlet, with built-in steam strainer
- 3 Control valves with servo operator for the live steam inlet
- 5 Bleeds
- Reverse flow protections for bleeds as shown in P&ID (loose supply)
- Axial exhaust
- Control system for speed, power (see chapter 6)
- Turbine protection (see chapter 6)
- Mat-type insulation
- Internal steam pipes with valves for balance piston, sealing steam and leak steam
- Internal pipes for drain system with valves
- Internal oil pipes for the lube and control oil system with valves
- Start-up drains with pneumatic operated shut-off valves
- Operating drains
- Flash box (optional)
- Baseframe for the turbine

- Earth terminal
- Boroscope openings in the turbine casing
- Sealing steam pressure control (sealing steam from live steam)
- 1 Connection for air dryer (dehumidifier)
- 1 Sealing steam cooler for the rear labyrinth
- Standard preservation (6 months) as per Siemens - factory standard
- Prime coat and finishing coat of paint as per Siemens - factory standard
- Touch up paint to Site
- Operation manual, 3-fold, in English

Gear Unit:

Single helical high-speed parallel-shaft gear with:

- Flanges for coupling guard on pinion and gear shaft
- Hollow shaft between turbine and gear unit
- Coupling guard between turbine and gear unit
- Coupling (quillshaft) between gear unit and generator
- Coupling cover between gear unit and generator
- Built-on barring gear with electric motor, coupling and softstarter
- Built-on main oil pump
- 6 Resistance thermometers wired to terminal box
(1 x for each radial bearing, 1 x for each side of thrust bearing)
- Shaft vibration pick-up wired to terminal box
- Base frame for the gear unit, as oil tank
- on the base frame are arranged: 1 electrical operated full load standby oil pump, 1 electrical operated emergency oil pump, 1 double oil cooler (2 x 100%), 1 double oil filter (2 x 100%), 1 oil vapour extractor, 1 jacking oil pump
- Foundation anchors, -bolts and leveling spindles
- Inspection documents acc. to EN 10204
- Trial run acc. to the Siemens standard test program
- Painting acc. to factory standard
- Preservation acc. to factory standard

Lube Oil Plant:

Design of the oil plant according to the manufacturer's standard

Design of the oil coolers according to DIN

The lube oil plant arranged on the gear package with integrated oil tank comprises following main parts:

- 100% auxiliary oil pump, three-phase a.c. motor driven
- approx. 40 % emergency oil pump, d.c. motor driven
- Jacking oil pump, three-phase a.c. motor driven
- Oil vapor extractor with three-phase a.c. motor
- Oil tank heater (electric immersion heater for Tamb. < 15°C)
- 2 x 100 % oil coolers (tubes made of CuZn28Sn and tube sheets made of CuZn38SnAlF39)
- 2 x 100 % lube oil filters
- Change-over device (oil cooler and oil filter) for switching operations without interruption of the oil supply

- Pressure control for the lube oil
- Oil safety valve

Additional accessories:

- Direct driven main oil pump (at the gear unit)

Control Oil Unit:

The hydraulic supply unit is installed on a separate skid ready for operation and consists of the following main parts:

- 2 x 100% displacement piston type pumps, AC motor driven
- 1 oil tank
- 1 oil accumulator
- 2 x 100% oil filter with change over device
- 1 off-line cooling pump, AC motor driven
- 1 oil cooler (oil/air) with fan
- Interconnecting oil pipes (stainless steel) with valves

Surface Condensing Plant:

Not in Siemens' scope of supply

Optional: Siemens will submit the following documents of the main condenser
Incl. in Siemens scope for engineering support is:

- The thermodynamic design data based on customer material specification provided in advanced
- assembly drawing
- Mechanical data sheet including the following.:
 - dimensions of tubes
 - tube sheet
 - shell
 - Allocation of tube bundles in tube sheet.

Excluded from Siemens scope is the following:

- any kind of liability and guarantee
- support during manufacturing and installation
- detailed manufacture drawings
- quality control of manufacture

The design / supply of the ejector unit including condensate pumps, ejectors, interand after condenser and control valves and interconnecting piping are not in Siemens scope.

Miscellaneous:

ALTERNATIVE 1:

- Spring elements for the turbine table
- Basic & detail engineering
- Documentation in ENGLISH
- Packing for transportation

- Freight FOB, north German seaport, in accordance with INCOTERMS 2000
- Turbine anchor bolts if required by Siemens

Base offer:

- Basic & detail engineering
- Documentation in ENGLISH
- Packing for transportation
- Freight FOB, north German seaport, in accordance with INCOTERMS 2000
- Turbine anchor bolts if required by Siemens
- List of special tools required for erection

Steam turbine:

- Blow out device for trip valve
- Aligning device (shaft)
- Container for the special tools

Spare Parts:

One set for two years of continuous operation we recommend the following spare parts:

Steam turbine:

- 1 Set of pads for the main bearings of the turbine (radial and axial bearings)
- 1 Set of oil sealing rings for these bearings
- 1 Set of sealing strips with caulking wires for the shaft labyrinth
- 1 Set packings and spindles for control valves

Gear unit:

- 1 Set of bearings for the pinion and the wheel shaft
- 1 Set of shaft sealing rings

Oil units:

- 1 Set gaskets
- 1 pc. Pressure regulation valve cone
- 1 Set lubrication oil filter elements
- 1 Set control oil filter elements

Instrumentation:

- 1 pc. Pick-up for speed
- 1 pc. Pick-up for axial displacement
- 2 pc. Pick-up for shaft vibration
- 2 pc. RTD for bearing temperature – turbine
- 2 pc. RTD for bearing temperature – gear unit
- 1 pc. Pressure switch (valve block)
- 1 pc. Position transducer (steam control valve)
- 2 pc. Instrument 3-way valve
- 1 pc. O-Ring

Generator:

Not included in the offer

Supervision of Erection, commissioning and trial run (separate contract):

The scope of service, based on daily rates, includes the following:

The assignment of personnel (and, if applicable, the tools) for:

- The supervision of the erection (ready for commissioning)
- The preparation of commissioning
- The commissioning
- Training on the job during commissioning
- Classroom training (Option), see separate proposal in Ch. 8
- The trial run (3 days, 10 hours daily with recall standby)
- Performance test acc. to ASME PTC 6.1 under conditions specified in section 8.3

An erection / commissioning coordination meeting shall be held before erection & commissioning activities.

See also chapter 8 "Erection time schedule" and "Specification of technical field assistance".

Performance test acc. ASME PTC 6.1:

The turbine unit will be tested in accordance with ASME PTC 6.1 as described in section 8.03 "conditions for Performance test. The test shall be carried out within three months after the provisional acceptance of the turbine, but no later than six months after first steam to turbine. During the performance test the plant will be operated under the responsibility of the customer taking due account of the operating instructions. The reports on beginning, course and end of the performance tests as issued by the supplier must be signed by the customer.

Performance test will be carried out by third party (not in Siemens scope)

Siemens scope of supply:

Test supervisor

Precision instruments

Fitting and removal of Siemens's precision instruments

Performances by others:

Labour, normal operating personnel, helpers etc.

Nozzles for flow measurements

Calibrated measuring transformers (3-phase) for power measurement

Necessary pressure taps outside Siemens delivery limits

Necessary temperature pockets outside Siemens delivery limits

Duration:

Three up to five days for the installation of Siemens-measuring instruments.

Two days each loadpoint for the calibration and testing.

If the test should be delayed due to reasons beyond Siemens control, any additional cost for Siemens personnel and instruments will be charged.

Number of test points:

The performance test will be carried out for one load point.

Tolerances:

The tolerances which are mentioned in the test instructions will be applied.

Exclusions from our Scope of Supply and Services:

Steam Turbo set

The following components and services are not included in our scope of supply:

- Live steam pipe up to the live-steam emergency-stop valve
- Condenser and Condensing system components
- Spacer / Interconnecting piece Turbine – main condenser
- Condensate sampling / analysing system
- Tube cleaning system of main condenser
- Bleed steam pipes from turbine nozzle to the bleed non-return flap valve and from there to the bleed steam system
- Cooling water pipes with isolating valves to and from the connecting nozzles of the corresponding equipment
- Safety valves in the steam, bleed, and water pipes
- Electric cables, switches, contactors and fuses
- Foundations, earthworks, soil preparation
- Spring elements (not required in case of base offer)
- Dehumidifier
- Grouting of baseframe with non shrinking material
- Masonry
- Heating and lighting of the machine house
- Compressed air, water and power supply on site
- Shop test run
- Manufacturing drawings
- Guarantee measurements
- Machine house crane
- Steel structures, platforms, pedestals
- Auxiliary systems, such as cooling water circuit etc.
- HP and LP bypass stations
- Lightning protection and earthing system
- Fire fighting equipment
- First oil filling
- Calculation of the foundation
- Noise hood or Hood for outdoor installation
- Generator and accessories (only one generator is included for Turbine 1)
- Pressure reducing or by pass station
- Interconnecting oil piping between oil system and Generator
- Vent steam condenser

General remark:

All systems connected to the turbine have to be self-protected in acc. with

DGRL 9723EG

Limits of Supply:

Steam

Inlet connection of the turbine live-steam emergency-trip valve

Outlet flanges of the turbine bleeds

Inlet and outlet flanges of the bleed non-return flap valves

Outlet connection on turbine exhaust

Inlet flanges of the sealing steam pressure control valves

Cooling Water

Inlet and outlet flanges of the oil coolers

Inlet and outlet flanges of the generator (only in case generator is in Siemens scope of supply)

Drains

Outlet flange of the falsh box

Electric Current

Connecting terminals of the electric motors

Connecting terminals of the solenoid valves

Connecting terminals for terminal strip (group terminal)

Connecting terminals inside the cubicles

Oil

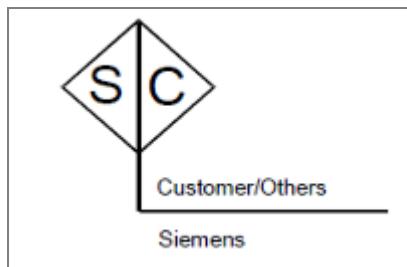
Filling connection on turbine oil tank

Inlet / Outlet flange on oil reservoir to the generator (both lubricating oil & lifting oil)

Air (Compressed Air and Instrument Air)

Connection at the control equipment

General remark:


In general the piping interface to customer shall be according to Siemens standard i.e. welding or Flanges. In case of Flanges it shall be according to ANSI. Counter flanges, bolts and interconnecting pieces will be supplied by Kaidi.

Siemens will submit during detailed engineering a detailed list, including detailed flange, bolts, nuts, gaskets...etc information, of all customer's connections.

For further details please refer to attached P & I Diagrams in Chapter 7

Limits of Supply

To define the limits of supply the following symbol is used in the P&I diagrams:
(See chapter 7)

Standards, Regulations and Guidelines:

The applicable standards, regulations and guidelines valid at the time of tender submission form the basis for planning and supply of the equipment, except for deviations that are specified in the list of deviations and clarifications.

Unless otherwise agreed, we use the power system designation system KKS, last edition. In respect of numbering, a more detailed system incorporating suitable producer-related groups of numbers is employed in addition.

Basic Standards

Unless other basic standards have been agreed upon with the customer, the quotation of SIEMENS is based on European standards and international standards (EN, DIN, IEC etc.) and the following standards, as far as the equipment covered therein is part of the scope of supply:

Main Components:

- Turbine with pressure casing and pressure oil system acc. to DIN 4312.
- Gear units acc. to AGMA 421.06
- Generator acc. to European IEC-Standards
- Condenser: mechanical strength acc. to AD-regulations, bases on VGB-R455P, thermal rating acc. to HEI.

Pipes and Connections:

- Internal design of steam and condensate pipes acc. to DIN 2413.
- Oil pipes made of stainless steel, seam welded
- Flanged connections in the oil system PN16 acc. to DIN EN 1092-1, contact surface acc. to Form B.
- Flanged connections in the steam area acc. to DIN EN 1092-1

Plant Control and Instrumentation:

- Vibration severity acc. to ISO 10816, shaft vibrations acc. to ISO 7919. Probes acc. to DIN 43 760.

Protection

- Earthing acc. to VDE 0100 and 0141, identification acc. to DIN 40 011.

Inspection and Testing:

- Examinations and tests according to the E&T Plan of SIEMENS. Certificates acc. to EN 10 204-2.2 and 3.1.
- The thermal acceptance tests of steam turbines are performed acc. to DIN 1943. (VDI-Steam Turbine Code)
- Examination and acceptance of pipes and connections acc. to DIN EN 1127.
- Non destructive tests acc. to DIN EN 1559
- Qualification testing of welders acc. to DIN-EN 287.

Welding:

- Welding procedure acc. to DIN EN 15614.

Noise:

- Sound measurement acc. to EN ISO 4871.

Insulation:

- The insulation thickness is determined in accordance with our factory standard based on DIN 18 421 and VDI 2065. Material certificate acc. to VDI 2055.

Painting / Preservation:

- De-rusting in accordance with the Swedish standard SA 2,5, similar as DIN 55928.
- Prime coat of paint acc. to manufacturer's standard.
- Final painting acc. to manufacturer's standard.
- Preservation for non-painted surfaces acc. to manufacturer's standard in accordance with VGB-R 116 H.

Electrical Systems:

- Electric motors: Rating classes acc. to IEC 34. Standard motors acc. to IEC 72 and DIN 42 677.
- Cables for voltages up to 60 V acc. to VDE 0815.

Miscellaneous:

- Turbine oil acc. to ISO, viscosity VG 46.
- Material strength design of the heat exchangers acc. to AD-Code of Practice, DIN materials acc. to VGB-R455P table 3.
- Deviations and tolerances for tube bundles and heat exchangers acc. to DIN 28008.
- Design of steam ejectors and vacuum pumps acc. to VGB-R 126 L.
- Bolts acc. to DIN 933, nuts acc. to DIN 934. Bolted joints on pressure casings acc. to DIN 938/939. Admissible stresses in the bolts acc. to DIN ISO 898 / DIN 17240, in the nuts acc. to DIN 267.
- Denominations acc. to DIN 19 227 in accordance with SI basic units acc. to DIN 1301.
- Symbols on P&I D's acc. to ISO 10628.
- Blowing out of steam piping in accordance with Siemens factory standard 1CWN002896.

Technical Requirements:

Oil Specification

For the common lube and control oil system for turbine, gearing (if applicable) and driven unit, mineral oil must be used in accordance with DIN Standard 51515 (May 1978) and have the following properties:

Designation	Requirement	Test Method
Lube oil type	TD 46	
ISO viscosity class	ISO VG 46	DIN 51519
Hitherto existing code number (correlation)	25	
Kinematic viscosity at 40°C	min. 41.4 mm ² / s (cSt) max. 50.6 mm ² / s (cSt)	DIN 51550 in connection with DIN 51561 or DIN 51562
Mean dynamic viscosity at 40°C	41.4×10^{-3} Pa s	
Viscosity index not less than	95	
Density at 15°C not more than	0.90 kg/l	DIN 51757
Flash point (Cleveland) not less than	185 °C	DIN 51376
Pourpoint equal to or less than	-6 °C	DIN 51597
Neutralisation number not more than	0.1 *) mgKOH/g	DIN 51558 Part 1
Max. saponification number	0.15 *) mgKOG/g	DIN 51559
Max. ash content (oxide ash) not more than	0.01 *) % by weight	
Water content g/100g	below the limit of quantifiable detectability	DIN 51582
Content of foreign solids g/100g	below the limit of quantifiable detectability	DIN 51592
Demulsification number	max. 300 sec.	DIN 51589 Part 1
De-airability (air release property) at 50°C	max. 5 min	DIN 51581
Corrosion influence on copper, corrosion degree	max. 2-100 A3	DIN 51759 (3h at 100°C)
Corrosion protection property against steel	0 - A (free of corrosion)	DIN 51585
Ageing behaviour Increase of neutralisation number after 1000 h	max. 2.0 mg KOH / g oil	DIN 51587
Spec. loadability (gear unit)	6 - 7 Damage power stage **) FZG Normal test IP 166/65	DIN 51354 (A/8, 3/90) ASTMD 1976

As additives are used, these values are higher and are to be stated by the supplier. Oils with additive materials contain deterioration and corrosion protection as well as additive which prevent foaming.

NOTE:

1. EP additives increase the specific load ability (mechanical limiting load)
 - with EP additives (FZG >7): turbo sets with gear units
 - without EP additives(FZG <7): turbo sets without gear units
- Refer to the lube oil specification of the gear manufacturer in this regard.
2. Not included in DIN 51515.

Steam purity requirements:

Guidelines for the inlet steam condensate

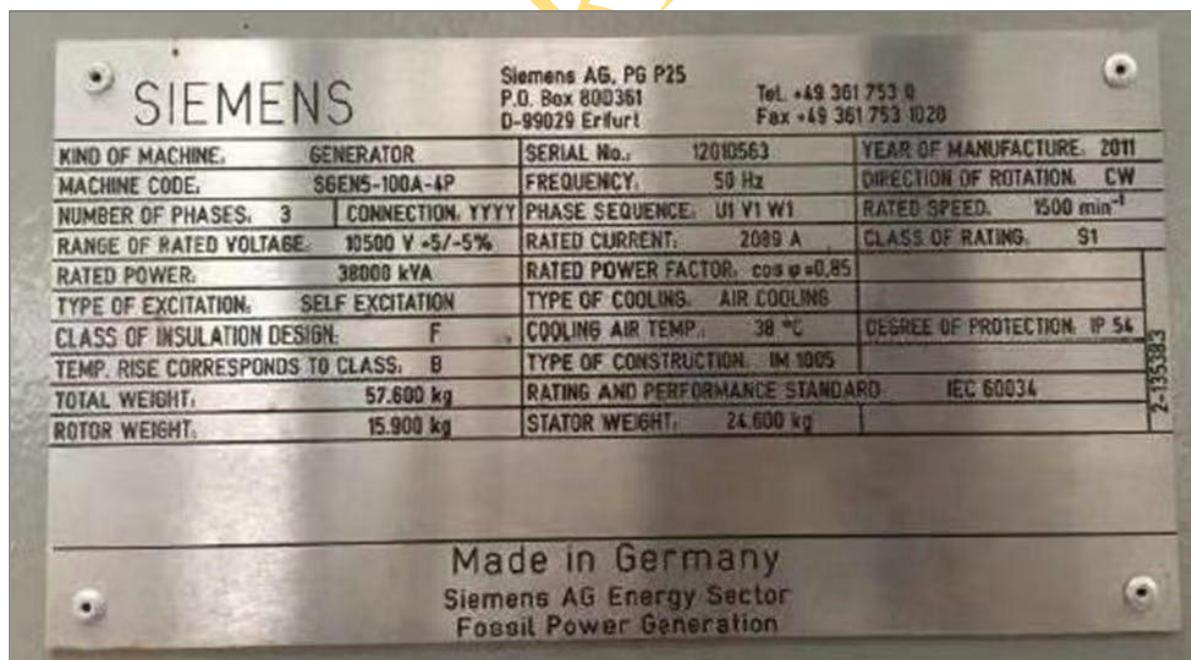
Kindly refer to the attachment, 02_Appendix_2.3_Steam_Purity_Requirement.pdf, for the recommended steam quality.

Monitoring

We strongly recommend the continuous monitoring of the water/steam cycle by constantly recording the electric conductivity (at 25 °C) at a local sampling point downstream of the strongly acidic cation exchanger, and the determination of the silica content. The monitoring equipment should be installed on the inlet steam and condensate sides.

General Comments on Technical Inquiry Specifications:

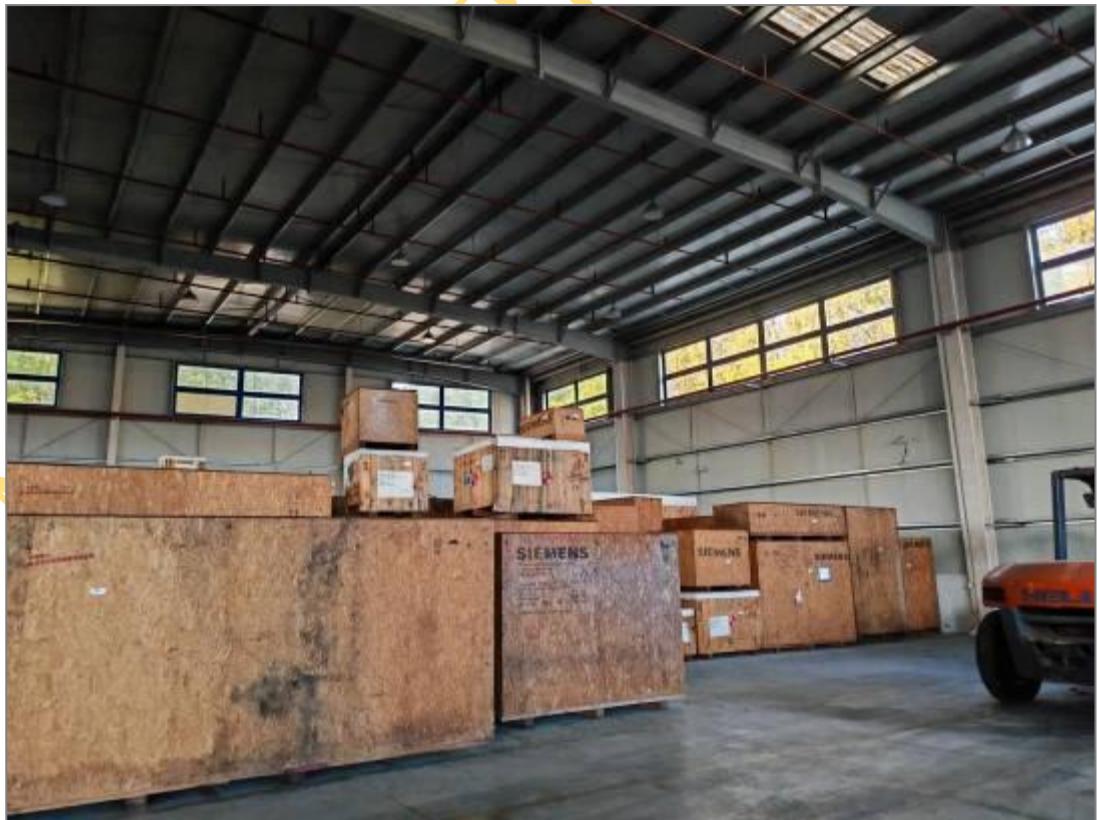
Our supplies and services shall be designed in accordance with those standards, guidelines and specifications applicable within Germany and Europe. The customer's piping interface will be ANSI flange connections. In addition, Siemens has developed internal guidelines and specifications for implementation, based on its many years of experience with steam turbine generation plants. This ensures a high degree of safety and availability.



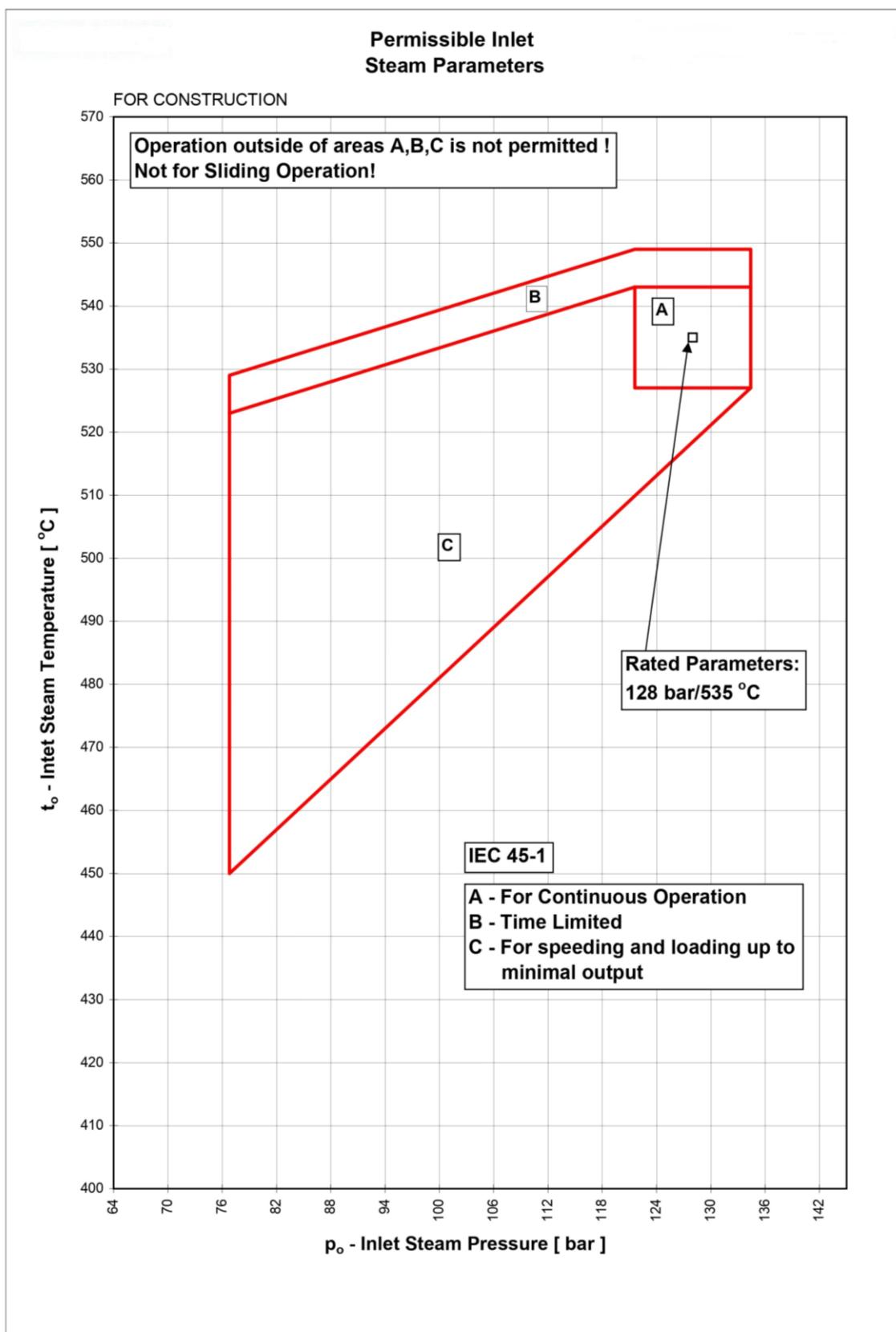
List of Major Suppliers for Equipment for Turbo groups

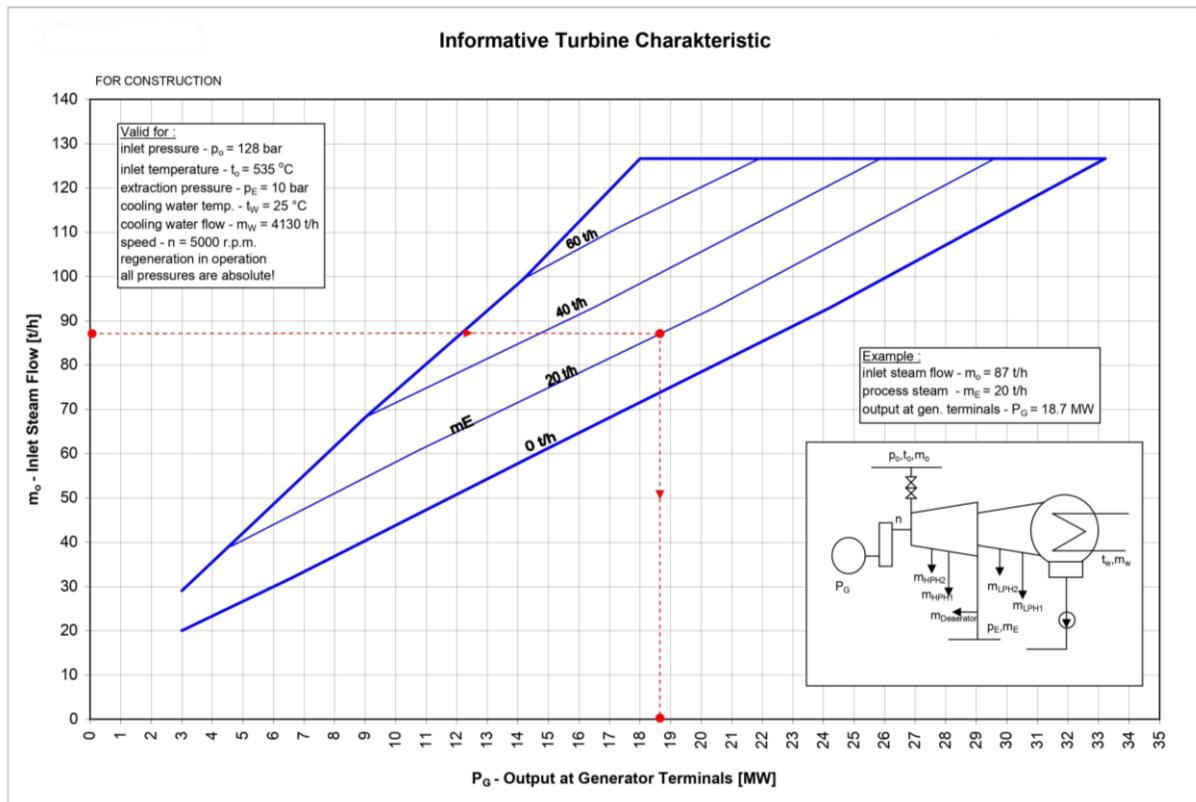
Siemens cooperates with approved suppliers and procures equipment and materials world wide at competitive price levels. It is not possible therefore to name single subcontractors for the various items of the power plant.

The sub suppliers are approved by Siemens. Siemens may also consider other equivalent approved suppliers and reserves the right to select an equivalent supplier.


Kindly refer to 02_Appendix_2.2_Siemens_Subsuppliers_List.pdf for the list of sub-suppliers.

PHOTOS:





NITIN CORPORATION

DRAWINGS:

NITIN CORP